The second secon

Occupational Exposure Banding 2.0: A Preliminary Case Study

Christine Whittaker, Ph.D.

Chief, Risk Evaluation Branch

Alliance for Risk Assessment Beyond Science and Decision Workshop XI

18 February 2020

Disclaimer: The findings and conclusions in this presentation are those of the author and do not necessarily represent the National Institute for Occupational Safety and Health or the Centers for Disease Control and Prevention.

Occupational Exposure Banding Objective

To create a consistent and documented process to characterize chemical hazards so timely and well-informed risk management decisions can be made for chemicals lacking OELs. Reduce

Control

Mitigate

What is Occupational Exposure Banding?

A mechanism to quickly and accurately assign chemicals into "categories" or "bands" based on their health outcomes and potency considerations

Higher Concentrations Lower Concentrations

NIOSH Occupational Exposure Bands

Occupational	Airborne Target Range			
Exposure Band	for Particulate Concentration (mg/m ³)	for Gas or Vapor Concentration (ppm)		
A	>10mg/m ³	>100 ppm		
В	>1 to 10 mg/m ³	>10 to 100 ppm		
C	>0.1 to 1 mg/m ³	>1 to10 ppm		
D	>0.01 to 0.1 mg/m ³	>0.1 to 1 ppm		
E	≤0.01 mg/m³	≤0.1 ppm		

How is the Banding Process Organized?

Bands are assigned based on:

- acute toxicity
- skin corrosion and irritation
- serious eye damage and irritation
- respiratory sensitization
- skin sensitization
- genotoxicity
- carcinogenicity
- reproductive/developmental toxicity
- specific target organ toxicity resulting from repeated exposure

Tier 1 — GHS Hazard Codes

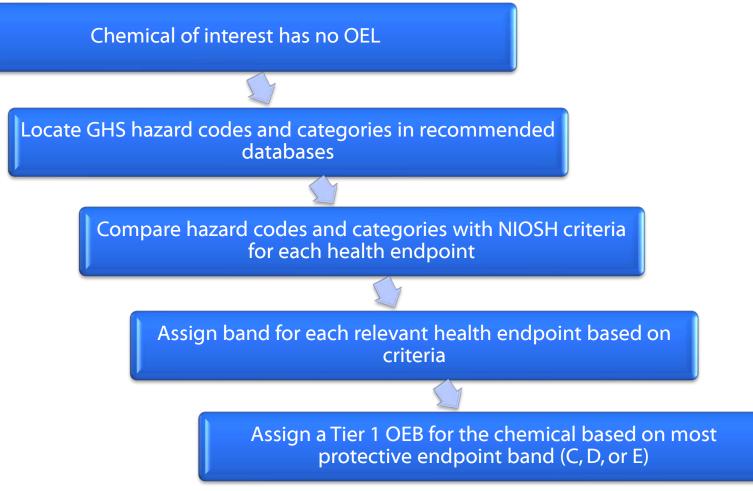
User: Health and safety generalist

A Tier 1 evaluation utilizes GHS Hazard Statements and Categories to identify chemicals that have the potential to cause irreversible health effects.

Tier 2— Secondary Data Sources

<u>User</u>: Properly trained occupational hygienist

A Tier 2 evaluation produces a more refined OEB, based on point of departure data from reliable sources. Data availability and quality are considered.


Tier 3—Expert Judgement

<u>User</u>:Toxicologist or experienced occupational hygienist Tier 3 involves the integration of all available data and determining the degree of conviction of the outcome.

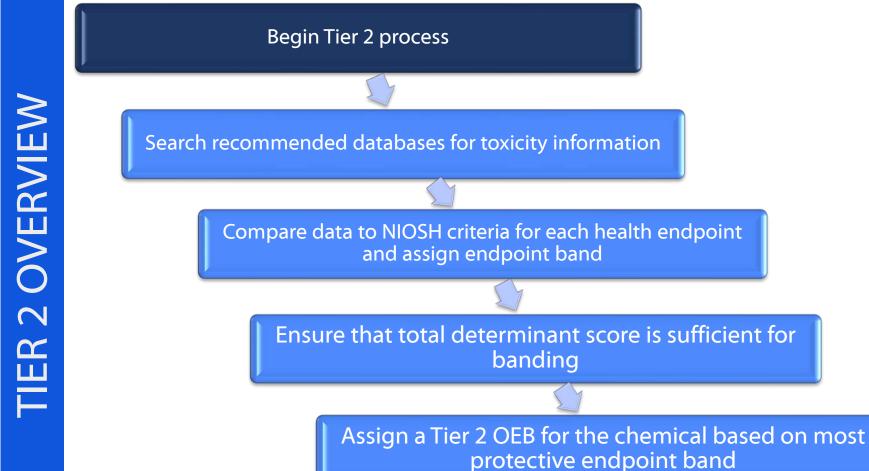
OVERVIEW

TIER 1

TIER 1 Criteria		C	D	E	
OEL Ranges	Particle	> 0.1 to \leq 1 mg per cubic meter of air (mg/m ³)	> 0.01 to ≤ 0.1 mg/m³	<u>≤</u> 0.01 mg/m³	
	Vapor	> 1 to <u><</u> 10 parts per million (ppm)	> 0.1 to <u><</u> 1 ppm	<u><</u> 0.1 ppm	
Acute Toxicity		H301 Category 3 H302 Category 4 H331 Category 3 H332 Category 4 H311 Category 3 H312 Category 4	H300 Category 2 H330 Category 2 H310 Category 2	H300 Category 1 H330 Category 1 H310 Category 1	
Skin Corrosion/Irritation		H315 Category 2		H314 Category 1, 1A, 1B, or 1C	
Serious Eye Damage/ Eye irritation		H319 Category 2, 2A or 2B		H318 Category 1	
Respiratory and Skin Sensitization		H317 Category 1B	H317 Category 1 or 1A		
			H334 Category 1B	H334 Category 1 or 1A	
Genotoxicity			H341 Category 2	H340 Category 1, 1A or 1B	
Carcinogenicity				H350 Category 1, 1A, or 1B H351 Category 2	
Toxic to Reproduction		H361 (including H361f, H361d, and H361fd) Category 2	H360 (including H360f, H360d, and H360fd) Category 1B	H360 (including H360f, H360d, and H360fd) Category 1 or 1A	
Specific Target Organ Toxicity		H371 Category 2 H373 Category 2		H370 Category 1 H372 Category 1	

Tier 2

Tier 2 is always recommended, but especially useful when:


- there are no GHS H codes
- the outcome of the Tier 1 analysis is incomplete, or an insufficient reflection of the health potency of the chemical

Tier 2 — Both Qualitative and Quantitative

- Some training in toxicology
- Based on readily available secondary data from authoritative sources (government, professional health agencies, authoritative toxicological benchmarks)
- Needs sufficient data to generate reliable OEB
- Prescriptive analytical strategy to ensure consistency
- Potential for chemicals to be moved from the Tier 1 OEB to a more¹dr less protective OEB

Recommendation --- Rane Test 1(1)

Liquid/Vapor Range: <= 0.1 ppm Particle Range: <= 0.01 mg/m ²								
Recommended Band			TDS=85	E				
Endpoint	Source	Data	EDS	Endpoin Band				
Carcinogenicity Quant	EPA IRIS Slope Factor	1 x 0.00001 (mg/kg-day) ⁻¹	30	С				
	California Slope Factor	1 x 0.000001 (mg/kg-day) ⁻¹		С				
Carcinogenicity WOE	U.S. EPA IRIS	Group C (possible human carcinogen)	20	D				
Reproductive Toxicity								
Target-Organ Toxicity	U.S. EPA: IRIS	Rank 1; NOAEL; 90 hrs; 4.8 ppm	30	Е				
Genotoxicity Toxicity								
Respiratory Sensitization	WHO: International Programme on Chemical Safety	Rank: 1; Results: Mixed	10	С				
Skin Sensitization								
Acute Toxicity	National Library of Medicine ChemID Plus	Rank: 1; Type: Oral LD50; Duration: 4.00 hrs; Input: 661	5	В				
Skin Irritation	WHO: International Programme on Chemical Safety	Rank: 1; Results: Skin corrosion/irreversible effects	5	Е				
	Organization for Economic Co-operation and Development	Rank: 1; Results: Moderate to severe irritation		С				
Eye Irritation	WHO: International Programme on Chemical Safety	Rank: 1; Results: Irreversible eye damage	5	Е				
	Carcinogenicity: Cancer Test Information: https://ntp.niehs.nih.gov/pubhealth/roc/index.html							
Notes	STOT: STOT Test Information: https://ntp.niehs.nih.gov/testing/types/heathandsafety/index.html							

Tier 2 Endpoints with Quantitative Criteria

- Carcinogenicity
 - Potency estimate (inhalation unit risk, slope factor)
 - Qualitative assessment (Y/N in absence of potency determination)
- Reproductive toxicity (includes developmental toxicity)
 - Potency based on NOAEL, BMDL, BMCL
- Specific target organ toxicity
 - Potency based on NOAEL, BMDL, BMCL
- Skin sensitization
 - Potency based on LLNA, GPMT, Beuhler
 - Qualitative assessment (Y/N in absence of potency determination)
- Acute toxicity
 - Potency based on LD₅₀, LC₅₀

Tier 2 Endpoints with Qualitative Criteria

- Genotoxicity
 - Positive, mixed, negative results
- Respiratory Sensitization
 - Positive, mixed, negative results
- Skin Irritation or Corrosion
 - Non-irritating, mild to moderate, moderate to severe, irreversible
- Eye irritation or Damage
 - Non-irritating, mild to moderate, moderate to severe, irreversible

Tier 3 banding process

- Requires expert in toxicology
- Requires intensive review and evaluation of primary data
- Is required when insufficient data for Tier 2 banding
- No detailed guidance is available

Problem

- Many chemicals would not meet minimum data set requirement
 - What is the best way to consider chemicals with insufficient data?
- Are read-across or QSAR methods reliable enough to use?
- Are read-across or QSAR methods simple enough to use with a broad audience?
 - What are the uncertainties associated with these methods?
- How can these methods be reliably and reproducibly used to predict toxicity?

Potential Solution?

- Read-across methods
 - Strengths and weaknesses?
 - How much data is needed on other chemicals?
 - How are classes of chemicals defined reproducibly?
- QSAR
 - Expert- or data-driven?
 - What are the boundaries of the chemical structures that could be considered?
 - Strengths and weaknesses?

Other Solutions?

- What other methods should NIOSH consider?
- Are there existing methods that would serve or could be adapted?
 - Strengths and weaknesses?
 - Reproducibility?
 - Reliability?

Let's Discuss!